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Summary

The purpose of this document is to describe how Orpheus calculates tubing 
forces. These calculations are needed to determine the stresses in Coiled 
Tubing (CT) to ensure the safe working stresses are not being exceeded. 
They also are needed to predict the behavior of the CT in a highly deviated 
well, to determine if the planned job can be done, or to determine if the job 
being executed is proceeding as expected.

Orpheus is a tubing forces model (TFM) written specifically for Coiled 
Tubing (CT). The basic TFM calculation is performed by calculating the 
forces along the length of a CT string at a specific depth in a well, as the 
string is being either run into the hole (RIH) or being pulled out of the hole 
(POOH). This calculation is performed beginning at the downhole end of 
the CT string and calculating the forces on each segment of the string, pro-
gressing up the string to the surface.
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Basic Tubing Forces Model (TFM) Calculation
Introduction The basic TFM calculation is performed by summing the forces on each 
segment as discussed above. This is performed with the end of the CT 
string at a specified depth. The basic calculation is explained by using a 
simple example in which a CT segment is located in a straight, inclined 
section of a well without fluids or pressures, shown in Figure 1. As is dis-
cussed later, the length of the segment could vary from a few feet to the 
entire length of the well depending on variations in well geometry and CT 
geometry.

The vector triangle in Figure 1 shows how a weight WS can be broken into 
two component forces. FA is the force component in the axial direction 
(along the axis of the hole). FN is the force component in the normal direc-
tion (normal or perpendicular to the axis of the hole). The equations for 
each of these components are:

EQ 1

EQ 2

FIGURE 1 CT segment in a straight, inclined section of a well
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Basic Tubing Forces Model (TFM) Calculation
The friction force is calculated by multiplying the normal weight compo-
nent by the friction coefficient µ.

EQ 3

The real axial force is found by summing the weight component in the 
axial direction, FA, with the friction caused by the normal component of the 
weight, FN. Note that the axial component of the weight causes FR to be in 
tension, which is defined as a positive force. However, the sign of the fric-
tion force depends on the direction of motion. When RIH the friction 
causes a compressive (negative) force to be added to FR. When POOH the 
friction causes a tensile (positive) forces to be added to FR.

EQ 4

This is the basic calculation for one segment of the CT. Summing the 
results from a series of segments up a CT string yields the axial force on 
the CT in the well along it’s length. This force versus length profile is cal-
culated by Orpheus when the “run at depth” function is executed.

The calculation for tripping the CT string in and out of the hole simply 
repeats the “run at depth” TFM calculation above for many specified 
depths, stepping the CT string into and out of the well. The amount of data 
calculated during tripping is more than can be easily displayed. Thus, only 
the forces at surface, commonly known as the “Weight”, are displayed 
when the “trip in and out” function is used in Orpheus. Each of these values 
is the result of a TFM calculation along the entire length of the string in the 
well.

The basic TFM can be adapted to account for rotation of CT in the hole 
during either tripping (to achieve greater reach) or drilling (as a by-product 
of down-hole motors). In order for a segment of CT to be rotated, the fric-
tional resistance opposing the rotational motion, FRF, must be offset. 
Torque is the moment quantity which measures the ability of a force to 
rotate an object or oppose its rotation; it is equal to the force multiplied by 
the moment arm. So, TF, the torque associated with the opposing friction, 
would be the frictional force multiplied by the outer radius of the CT.

EQ 5

The incremental torque associated with frictional contact between CT and 
casing surfaces must be calculated for each segment and summed up the 
length of the CT string in exactly the same manner as real axial force, FR, 
is calculated.

NF FF µ=

FAR FFF ±=

RFF rFT =
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Basic Tubing Forces Model (TFM) Calculation
Since the friction force acts in the direction opposite of motion, a simple 
analysis of the velocity vectors of the CT during tripping or drilling pro-
vides a direct way to distribute some or all of the normal wall contact force 
between FF and FRF. If the axial velocity of the CT is VA and the equivalent 
linear velocity of rotation is VR, then the resultant velocity VCT is the vector 
sum of VA and VR, as shown in Figure 2.

The actual friction force will be in the direction opposite of VCT. Based on 
the velocity vector angle between VCT and VA, denoted by β, the axial and 
rotational components of friction resistance can be calculated.

EQ 6

If the CT string is continuously rotated while tripping into and out of the 
hole, then any initial static friction may be ignored. In this case, the oppos-
ing torque due to friction is cumulative for all segments up to the top. How-
ever, in the case of conventional CT drilling, the CT string itself is initially 
static. In this case, any torque caused by the down-hole motor is “damped 
out” by the torque associated with the drag of each CT segment. Since this 
is essentially a statics problem, a worst case solution is attained by apply-
ing the entire friction force to both axial and rotational drag.

FIGURE 2 CT segment moving axially and rotationally

βµ sinNRF FF = βµ cosNF FF =
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Basic Tubing Forces Model (TFM) Calculation
Theoretical Con-
cepts

The above description of a basic TFM only took into consideration mass 
and friction, and ignored the more complex issues of internal and external 
pressure, helical buckling, etc. In this section the more difficult concepts 
are discussed.

Real versus Effective 
Force

There is often confusion about the difference between the real axial force 
(FR) and the “effective force” (FE), sometimes called the “fictitious force”. 
Suri Suryanarayana of Mobil has clarified this situation. This clarification 
is documented below using a simple example. Imagine a closed ended pipe 
suspended in a well as shown below:

Let us consider only the lower section of this pipe from some point “A” 
downward. The variables used in this discussion are defined in the nomen-
clature at the end of this document.

The axial force components acting below point A are:

1. weight of the pipe acting downward = WS X

2. upward force on the end of the pipe due to the external 
pressure = PoB Ao

3. downward force on the end of the pipe due to the internal 
pressure = PiB Ai

Summing these forces to obtain the real axial force at A yields:

EQ 7

FIGURE 3 Closed ended pipe suspended in a well
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Basic Tubing Forces Model (TFM) Calculation
PiB and PoB can be calculated as follows:

EQ 8

EQ 9

Defining the buoyant weight per foot as:

EQ 10

Substituting Eq 8, Eq 9, and Eq 10 into Eq 7 and arranging terms yields:

EQ 11

Another force, the “effective force” is now defined as:

EQ 12

Note that this is a definition, not a real physical force. The effective force is 
the real force without the effects of pressure included. This force turns out 
to be much more convenient to work with for several reasons. Note that the 
effective force at point A can now be written by combining Eq 11 and 
Eq 12 as:

EQ 13

This is a much simpler equation to work with in a tubing forces model than 
Eq 11. Also, as shown in the Tech Note “The Effective Force”, the buck-
ling characteristics of a pipe depend upon the effective force, not the real 
force. The physical significance is that buoyancy, which is independent of 
depth, affects buckling; however, pressure, which is dependent on depth, 
does not affect buckling. The only significant quantities that depend upon 
the real force are the stresses and strains. Thus, the Orpheus tubing forces 
model works in effective force. The effective force is converted to real force 
only for stress calculations and output purposes.

One question that is often asked: Does the bottom hole pressure or the well 
head pressure try to force the CT out of the hole? The same question can be 
asked another way: When pushing pipe in against pressure, Does the well-
head pressure multiplied by the cross sectional area force need to be 
snubbed against or does the pressure at the bottom end of the pipe need to 
be snubbed against?

iiAiB XPP ξ+=

ooAoB XPP ξ+=

ooiiSB AAWW ξξ −+=

ooAiiABR APAPXWF −+=

ooAiiARE APAPFF +−=

XWF BE =
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Basic Tubing Forces Model (TFM) Calculation
To answer this question assume point A in the above analysis is at the sur-
face. The real force in Eq 7 is a function of the bottom of the pipe. How-
ever, the real force in Eq 11 is a function of the pressure at the top of the 
pipe! When the buoyant weight is being used to calculate the weight of the 
pipe, as is usually the case, the wellhead pressure should be used to calcu-
late the snubbing force.

Furthermore, since the TFM calculation is performed “segmentally” from 
the bottom of the CT to the surface, a boundary condition or starting condi-
tion is required at the bottom of the CT. Consider Figure 3:

1. If the end of the CT is closed, the real force FR (x=0) = PiB Ai - PoB Ao. 
From the definition of the effective force, FE(x=0) = FR(x=0) -
PiB Ai + PoB Ao. Substituting for the real force yields, FE (x=0) = 0.

2. If the end of the CT is open, the real force FR (x=0) = PoB (Ai - Ao). 
Now from the definition of the effective force and the fact that 
PoB = PiB for an open tube gives, FE (x=0) = 0.
Tech Note CTES, L.P. 7



Basic Tubing Forces Model (TFM) Calculation
Real Force versus 
“Weight”

The real force is calculated by rewriting Eq 12 to be:

EQ 14

Consider the diagram shown in Figure 4.

The real force just below the stripper can be calculated using Eq 14. Recall 
that it is this real force that must be used for stress calculations. The strip-
per causes the effective force to change such that the effective force above 
the stripper is reduced by the amount of the wellhead pressure times the 
cross sectional area, plus or minus the stripper friction depending upon the 
direction of movement. This can be written as:

EQ 15

Since PoA is zero above the stripper, the real force above the stripper is the 
effective force plus the internal pressure times internal area. Thus:

EQ 16

FIGURE 4 Forces at surface

ooAiiAER APAPFF −+=

Stripper

PoAo

Weight
Sensor

Hinge

Outer
Frame

Inner
Frame

PiAi

PiAi

Reel Back
Tension

Guide Arch

StripperFowhpoStripperBelowEStripperAboveE FAPFF −−−− ±−=

StripperFiiowhpoStripperBelowEStripperAboveR FAPAPFF −−−− ±+−=
Tech Note CTES, L.P. 8



Basic Tubing Forces Model (TFM) Calculation
It is this real force above the stripper which must be used in the stress cal-
culation. (It should be remembered that the real axial forces calculated in 
the Hercules module do not take these additional factors into consider-
ation.) Also, this force is different from the force measured by the weight 
indicator, typically known as the “weight”. The weight is affected by the 
forces acting above the injector and thus the weight is:

EQ 17

where RBT is the reel back tension.

Capstan or Belt Effect Assume that a section of CT is in tension when it passes around a curve in 
a well. The tension causes the CT to be pulled against the inside of the 
curve. The greater the tension, the greater the radial load pushing the CT 
against the casing. This radial load causes the friction with the casing to 
increase. This increased friction is known as the “capstan effect” or “belt 
effect”.

The same argument can be made if the CT is in compression. Now the CT 
is pushed against the outside of the curve in the well. Again, additional 
friction forces are generated which must be considered in a tubing forces 
calculation.

Thus, any curvature in a well, either in the inclination or the azimuth direc-
tions, causes additional friction which adversely affects the movement of 
the CT into and out of a well. Later we will see that there are cases where 
curvature is beneficial.

Sinusoidal Buckling 
Load

Imagine a straight CT string is being pushed into a straight horizontal cas-
ing. As the length of CT pushed into the casing increases the force required 
to push it increases. This force is equal to the total weight of the CT string 
in the casing multiplied by the friction coefficient. As the length increases 
the weight increases and thus the force required to push it increases. For the 
initial distance the CT remains straight, lying nicely in the “trough” formed 
by the bottom of the casing.

Once the force required to push the CT reaches a certain amount (load), the 
CT will begin to “snake” in a sinusoidal fashion back and forth across the 
bottom of the casing. This “certain amount” is referred to as the “sinusoi-
dal buckling load” or sometimes the “snake buckling load.” In drill pipe 
TFMs this is often referred to as the “critical buckling load.” However, 
there is nothing “critical” about this type of buckling. It does not prevent 
the CT from moving further into the well. The period of the sine wave is 
very large (usually 30 to 100 ft), and of course its amplitude is no greater 
than the ID of the casing. Thus the bending that is occurring is trivial. 
Orpheus does not even calculate when the sinusoidal buckling load is 
reached, since it has no impact on the tubing forces calculation.

RBTAPFWeight iiStripperAboveR −−= −
Tech Note CTES, L.P. 9



Basic Tubing Forces Model (TFM) Calculation
Helical Buckling Load Continuing to push the CT into the casing continues to increase the force 
required to push the CT. The first portion of the CT will still be lying 
straight in the casing. The second portion, which has an axial load greater 
than the sinusoidal buckling load, will be lying in a sine wave in the bottom 
of the casing. Again, a certain load is reached at which the CT begins to 
form a helix inside of the casing. This load is referred to as the “helical 
buckling load.” Again, this load isn’t critical. The period of the helix con-
tinues to be large, and no significant bending stresses occur in the CT mate-
rial. However, at this point the tubing forces calculation changes. Helical 
buckling itself does not prevent the CT from going further into the well. 
However, as the helix is pushed into the casing there are additional wall 
contact forces due to the helix. These wall contact forces increase the fric-
tion with the wall of the casing.

Lockup The additional wall contact forces and thus additional friction forces 
increase as the axial load applied to the CT increases. Now the CT has 3 
distinct sections. First there is a straight section up to the point where the 
sinusoidal buckling load is reached. This is followed by a section which is 
buckled into a sine wave, until the helical buckling load is reached. Finally 
there is a section of the CT which is buckled into a helix. It is only this 
third, helical section in which the additional wall contact forces are being 
generated.

These wall contact forces increase faster than the rate of increase of the 
axial load and eventually a “vicious circle” is created in which the addi-
tional axial force required to overcome friction increases faster than the 
applied axial load. This point is referred to as “helical lockup.” It is not 
possible to push the CT further into the casing once helical lockup is 
reached, no matter how much axial load is applied.

The original lockup calculation used in Orpheus (Lockup 1.0) did not take 
into consideration helical buckling, but rather was based on the yield 
strength of the CT material. Lockup was determined to occur when any 
additional force on end would cause the CT stresses to exceed the yield 
limit of the pipe. Usually this required setting down enough weight with 
the injector to yield the CT at the surface, which is unrealistic.

The new lockup calculation (Lockup 2.0) is a more sophisticated model 
which approximates the depth/force combination at which the wall contact 
forces resulting from helical buckling begin to overwhelm the applied axial 
load. Specifically, lockup is now defined to occur when a large increase in 
set down weight causes only a very small increase in force at the end of the 
tool (downhole force). Figure 5 shows the relationship between the down-
hole force and the set down weight at a specific depth. Although set down 
weight and downhole force are treated as positive quantities in the graph 
and in this discussion, in reality they tend to be compressive forces and 
hence negative.)
Tech Note CTES, L.P. 10



Basic Tubing Forces Model (TFM) Calculation
In Figure 5, dF is the change in downhole force, and dW is the correspond-
ing change in set down weight. The weight transfer is the slope, dF/dW.  If 
the weight transfer is less than an arbitrarily designated percentage, then 
the CT is considered to be locked up.

Effect of Curvature on 
Helical Buckling Load

The above theory applies to straight CT in a straight hole. Now let’s con-
sider what happens if the hole is not straight. Imagine the CT lying in a 
curved casing. The axial load applied to the CT causes it to “seat” itself in 
the “trough” formed by the casing. As the axial load increases, the radial 
load pushing the CT into the seat increases. Thus, the axial load required to 
cause the CT to pop out of the seat and form a helix is much greater than 
the helical buckling load for a straight hole.

Increasing the helical buckling load delays the onset of helical buckling, 
and thus delays the onset of lockup. Thus it could be argued that curvature 
in the well is beneficial. However, the belt effect caused by the curvature 
increases the friction. In most cases CT can be pushed further into a 
straight hole than into a curved hole.

Residual Bend The above theory applies to straight CT. However, the bending that occurs 
to the CT at the reel and at the guide arch causes residual stresses in the CT 
material, which causes the CT to be bent when not in tension. This “resid-
ual bend” causes lockup to occur more quickly.

Orpheus handles residual bend by assuming that the CT behaves as though 
it were straight. However, the friction coefficient for RIH is increased to 
account for residual bend. The typical friction coefficient of 0.2 is 
increased to 0.3, for RIH only. The increase of coefficient of friction for 
running in hole accounts for the additional wall contact forces due to resid-
ual bend.

FIGURE 5 Downhole force vs. set down weight
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Stress Calculations Orpheus has two stress calculations. By default, Orpheus uses the 
von Mises stress calculation. This calculation combines the axial stress due 
to the force on the tubing with the hoop stress caused by external and inter-
nal pressure and the radial stress caused by internal pressure, to calculate 
the combined stress at the inside surface of the CT. Note that for the stress 
calculation the real force, FR, must be used. FR is calculated from FE using 
Eq 12 solved for FR. For more details on how the von Mises stress is calcu-
lated see the Hercules module of Cerberus. CTES recommends that the 
von Mises stress be used.

If the user chooses to turn von Mises stress calculation off, Orpheus only 
calculates the axial stress. This is simply the real axial force in the CT 
divided by the cross-sectional area. The axial stress is provided only to 
allow the user to see this major component of the total stress by itself. The 
von Mises stress can be turned off under Options, Preferences.

Another component of stress which the user can choose to include in either 
the von Mises or the axial stress calculation is the additional axial stress 
due to the helical buckling. By default this stress is not included because it 
is a very localized stress and does not tend to cause CT failures. This stress 
component can be included under the Options, Preferences menu.

When the CT is being rotated by an applied torque at the surface or down-
hole end, the CT string will tend to twist about its longitudinal axis. This 
twist causes shear stress to occur in the planes of the circular cross-sections 
and in the longitudinal radial planes. In this case, Orpheus uses a form of 
the von Mises stress calculation which includes the shear stress term in 
addition to the three principal stresses discussed above.

Pressure Calculations The pressure values used in Orpheus are calculated from user inputs for 
fluid density and flow rate. Currently, the hydraulics model only supports 
single-phase liquids; however, in the future this model will be extended to 
include multi-phase fluids and gases.  In the case of flowing liquids, the 
pressures calculated include the frictional pressure loss component result-
ing from contact with the pipe and casing walls.
Tech Note CTES, L.P. 12
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Model Equations

Basic Equation As was described previously, the Orpheus model begins a calculation for 
the CT string at one position in the well: the bottom end of the string. The 
effective force and torque calculations are performed for each successive 
“segment” of the CT up to the surface. Note that the string segment dis-
cussed here has nothing to do with the string segments in String Manager. 
The length of a segment varies depending on variations in wall thickness, 
hole diameter, fluid density inside and outside the CT and well geometry. 
The maximum segment length can be set by the user, but usually it defaults 
to 100 ft. The basic differential equation pair1, which is integrated over the 
segment is:

 and EQ 18

where

EQ 19

and

EQ 20

This equation is similar to Eq 4 except that it includes the additional fric-
tion due to the capstan effect. Note that if the curvature terms dγ/ds and dθ/
ds are zero and the internal and external pressures are zero (no fluids), 
Eq 14 with Eq 15 included becomes the same as Eq 4.

Effect of Fluid Flow The flow of fluid in the CT and in the annulus around the CT produces two 
types of forces which must be accounted for in the equation of axial equi-
librium, i.e. Eq 18. First, there is a loss in the normal component of fluid 
pressure due to frictional contact between the fluid and the CT surface. 
Second, there is an additional tangential component caused by the shear 
stresses (or viscous drag) on the CT due to the fluid flow. As a result, it has 
been shown4 that the following term, which accounts for both of the fluid 
flow effects mentioned here, must be added to Eq 18:

EQ 21
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Helical Buckling Load The primary equation2 for the helical buckling load, ignoring the effect of 
friction on the helical buckling load, is

EQ 22

Mobil has provided CTES with proprietary modifications to this equation 
which account for the effect of friction on the helical buckling load. 
Another proprietary equation from Mobil is used for the helical buckling 
load when the inclination is less than 15 degrees.

Wall Contact Force Eq 19 is used by Orpheus to calculate the normal force per unit length that 
the CT makes with the hole wall due to weight and the curvature effect. If 
the CT is helically buckled, an additional wall contact force must be added 
to Eq 19 to account for the additional wall contact force caused by the 
helix. This additional wall contact force due to the helix is given by the fol-
lowing equation3:

EQ 23

The total wall contact force per unit length is found by summing Eq 19 and 
Eq 23. Orpheus outputs a curve showing these values.

Helix Period and 
Length Change

The period of the helix is calculated using the following equation4:

EQ 24

Orpheus uses this equation to calculate and output the period length.

The helical shape of the CT requires that the CT be longer than the section 
of the well it is in. In most cases the difference in length between the CT 
and the well section is quite small. Orpheus calculates this length differ-
ence using the following equation derived from geometry:

EQ 25
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Calculation Exam-
ples

The following examples show calculations for the real and effective force.

Vertical Well Example Consider a CT string of outer diameter 1.5” and thickness 0.109”, the CT 
string is hanging in a vertical well of 10,000 ft. Let the fluid density in the 
CT and the annulus between the CT and completion be 8.5 lb/gal (i.e. 
water of density 63.58 lb/ft3). Let the CT be closed at the down hole end. 
The weight per unit length of the CT is 1.623 lb/ft.

Therefore the real force at the end of the CT is FR = PiAi - PoAo, the inter-
nal and external pressures at the CT end are governed by the hydrostatic 
pressure in the CT and annulus around the CT at the depth in question.

FR (x=0) = ρo g h Ao - ρi g h Ai = 1,050.54 lbf

From the definition of the effective force, Eq 14, FE = 0.

The buoyed weight, per unit length, of the CT = 1.413 lbf/ft, from Eq 10.

From Eq 13, the effective force at the surface 
FE ( x=5,000 ft) = WB X = 5000 WB = 7,064 lbf

Consider two cases:

Case 1. Let the WHP, the circulating pressure, the stripper friction and the 
reel back tension be equal to zero. Then the real force at the surface = 
5,000 WB, from Eq 10, thus the surface weight as the CT is run in and 
pulled out of the well is a linear function of the amount L of the CT run into 
hole and equal to 1.413 L.

5,000 ft

FR = ?
 FE = ?

ρ
i

ρ
o

x
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Basic Tubing Forces Model (TFM) Calculation
Case 2. If the WHP = 5,000 psi, the stripper friction force = 300 lbf, the 
reelback tension is equal to 500 lbf while running in hole and 800 lbf while 
pulling out of hole, then from Eq 16 and Eq 17, the variation of surface 
weight as the CT is run in hole (RIH) and pulled out of hole (POOH) is:

WRIH= WB L - WHP Ao + Stripper Friction Force - RBTRIH

= -1971 lbf at 5,000 ft

W POOH= WB L - WHP Ao - Stripper Friction Force - RBTPOOH

= -2871 lbf at 5,000 ft

As the CT is being snubbed against the WHP force, the effect of WHP is to 
decrease the surface weight by a constant amount. Similarly the effect of 
the reelback tension is to decrease the surface weight.

Inclined Well Example Consider the same CT geometry as in the example for a straight well. The 
CT is now run in and pulled out of a well that is inclined at an angle, θ = 30 
degrees. Again, let the CT be buoyed by fluid of density 8.5 lb/gal in the 
CT and in the annulus around the CT and completion. Let the coefficient of 
friction between the CT and completion be 0.25 for RIH.

Force equilibrium (or Eq 18 with θ = constant and γ = 0) gives:

where s is the measured depth along the well.

30 deg s

5,000 ft

θµθ sincos BB
E WW

ds
dF

±=
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This equation can be integrated to give the effective force as a function of 
measured depth, noting that the effective force at the downhole end of the 
CT is zero (if the CT is open or close ended). Thus, the effective force dis-
tribution in the CT string is

The effective force at surface, given the CT is run in hole to a measured 
depth, L equal to 5,000 ft is:

So it can be seen by changing the well geometry from a vertical to an 
inclined well , the surface weight has decreased, while RIH, due to fric-
tional resistance.

Now again if the WHP = 5,000 psi, the stripper friction force = 300 lbf, the 
reelback tension is equal to 500 lbf while running in hole, then the varia-
tion of surface weight as the CT is run in hole (RIH) is:

Again, the surface weight is a linear function of the amount of CT run in 
hole, but is offset by the well head pressure, stripper friction and reelback 
tension.

Furthermore, if the stresses in the CT string are to be examined, the effec-
tive force needs to be converted back to the real force. For instance, if we 
wish to determine the true force and stress in the CT string at a measured 
depth of 1,000 ft from the surface, while the string is being run in hole at a 
measured depth of 5,000 ft.

Then the true force= effective force at 1,000 ft
+ internal pressure of the CT at 1,000 ft * AI
- external pressure of the CT at 1,000 ft* Ao.

The effective force at a measured depth of 1,000 ft is:

Note we measure from the bottom of the CT.

( ) ( ) sWWsF BBE  sincos θµθ ±=

( ) ( ) lbf34.5235047.1 sincos ==−= LLWWlF BBE θµθ

( )

73.035,9047.1

 sincos

−=
−+
−−=

L
RBTrceriction FoStripper F

AWHPLWWW

RIH

oBRIHBRIH θµθ

( ) lbfWW BRIHB 060,4000,4 sincos =− θµθ
Tech Note CTES, L.P. 17



Basic Tubing Forces Model (TFM) Calculation
The internal and external pressure of the CT is ρi g 1,000 Cos θ and ρo g 
1,000 Cos θ, note 1,000 Cos θ is the true vertical depth of the point at a 
measured depth of 1,000 ft . Thus, the true force at a depth of 1,000 ft is 
3,990 lbf and hence the axial stress in the CT at this point is: 3,990/ (Ai - 
Ao) = 8,382.4 psi.

Curved Well Example Consider now a curved well with a constant radius of curvature (equal to R, 
or constant curvature, κ = 1/R). It can be shown that for a well with a con-
stant curvature, the differential equation governing the effective force, i.e 
Eq 18 becomes:

, by definition 

The above equation assume no buckling occurs.

Thus, for running in hole:

This can be integrated to give, assuming that the CT contacts the bottom 
side of the well:

The solution obeys the condition that FE = 0 at s = 0. Let the radius of cur-
vature R = 10,000 ft.

⎥⎦
⎤

⎢⎣
⎡ +±= θθµθ sincos BEB

E W
ds
dFW

ds
dF
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==

Rds
dθ

⎥⎦
⎤

⎢⎣
⎡ +−= sW

R
FsW

ds
dF

B
E

B
E  sin cos κµκ

( )[ ] sBB
E essRWRWF µκκµκµ

µµ
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22 −−
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+
+
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 R=10,000 ft

S=L=5,000 ft
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Basic Tubing Forces Model (TFM) Calculation
Let’s examine, the effective force, real force, surface weight and stresses of 
CT with 1.5” OD and 0.109” (WB = 1.623 lb/ft) thickness being run in hole 
to a measured depth of 5,000 ft.

For a measured depth of 5,000 ft the true vertical depth is 
5,000 Cos(28.65) = 4,387.8 ft. For a measured depth of 1,000 ft the true 
vertical depth is 1,000 Cos(5.73) = 995 ft. (The angles are obtained from 
the radius and measured depth being the arc of the well path).

Firstly, calculating the effective force at the surface, given 5,000 ft of CT 
has been RIH gives:

Now again if the WHP = 5,000 psi, the stripper friction force = 300 lbf, the 
reelback tension is equal to 500 lbf while running in hole and 800 lbf while 
pulling out of hole, then the variation of surface weight as the CT is run in 
hole (RIH) and pulled out of hole (POOH) is:

Again, lets calculate the effective force at 1,000 ft, the corresponding true 
force and the stress at 1,000 ft:

FE (MD = 1,000 ft) = 5,050 lbf

FR = 4,840 lbf

Thus the axial stress at 1,000 ft in the CT = 10,168 psi.
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( )( )
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Basic Tubing Forces Model (TFM) Calculation
Nomenclature Ai = cross sectional area of the inside of the pipe - in2

Ao = cross sectional area of the outside of the pipe - in2

E = Young’s Modulus - psi

FA = axial force component - lbs

FE = effective force - lbs

FHB = helical buckling force - lbs

FN = normal force component - lbs

FNHB = normal force component due to helix - lbs

FR = real force - lbs

FRF = frictional resistance opposing rotational motion - lbs

I = moment of inertia - in4

L = length of well segment - ft

∆L = amount CT segment is longer than well segment due to helix - ft

PiA = internal pressure at point A - psi

PoA = external pressure at point A - psi

PiB = internal pressure at the end (point B) - psi

PoB = external pressure at the end (point B) - psi

rc = radial clearance between CT and hole wall - in

s = axis along length of CT

TF = torque - ft lbs

WB = buoyant weight of the pipe - lb/ft

WS = weight of the steel pipe - lb/ft

X = length of pipe below point A - ft

β = velocity vector angle - radians

ξI = “density” of the fluid inside the pipe - psi/ft

ξo = “density” of the fluid outside the pipe - psi/ft

γ = azimuth angle - degrees

θ = inclination angle - degrees

λ = period of helix - ft

τc = shear stress term on the outer radius of completion

τo = shear stress term on the outer surface of the CT
Tech Note CTES, L.P. 20



Basic Tubing Forces Model (TFM) Calculation
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