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Summary

In the �Basic Tubing Forces Model� Tech Note, the effective force, Fe, is 
introduced as a convenience in calculating axial force within a segment of 
CT. Furthermore, the effective force is claimed to be the decisive factor 
affecting helical buckling of tubing, as opposed to the real axial force.

The purpose of the following discussion is to provide a more intuitive 
understanding of the effective force and its relationship to real axial force 
and to substantiate the claims made as to its relationship with helical buck-
ling.
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The Effective Force
The Effect of 
External Pressure

Consider a tubular (CT, riser, tubing, casing) in the configuration below 
bent downhole, the tubular terminates at AB. Fluid has access to the termi-
nation AB and imparts a pressure force, f, which subjects the rod to com-
pression.

Now consider any cross-section MM�. The forces acting on the portion of 
the rod below MM� are as follows:

1. A pressure force f, that subjects the tubular to a compression.

2. The weight Wst of the portion of the rod below MM� (the weight is 
applied at the center of gravity of the section).

3. The reaction r of the portion of the rod above MM� on the portion 
below MM�.

4. The resultant g of the pressure forces acting on the lateral surface of the 
rod. The resultant g is not zero because arc BC is longer than arc AD. 
Consequently the area at the vicinity of BC is greater than the area at 
the vicinity of AD; therefore pressure forces in the direction of g are 
greater than the pressure forces in the direction opposite to g. Thus the 
resultant pressure acting on the lateral surface is as shown in Figure 1 
by the vector g.

FIGURE 1 Effect of Outside Pressure on Tubular
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The Effective Force
Let O be the center of the cross section MM�. The bending moment, M, at 
the cross-section MM� is:

M = Mo( f ) + Mo( g ) + Mo( Wst ) , noting that Mo( r ) = 0 EQ 1

It might seem that the determination of the force g is difficult, as its magni-
tude depends on the shape of the bent tubular. g may be determined in the 
following manner. Consider the portion ABCD immersed in the fluid, from 
Archimedes� law, the resultant forces of f, g and r is equal to the weight of 
the fluid displaced by the portion of the rod below MM�, see Figure 2, 
where Wo is an upward force applied at the center of gravity G:

f + g + r = - Wo EQ 2

Note that Wo is in the opposite direction of Wst, hence the minus sign.

Taking moments of forces at O, we have:

Mo( f ) + Mo( g ) = - Mo( Wo) EQ 3

Eq 1 and Eq 3 leads to:

M = - Mo( Wo ) + Mo( Wst) EQ 4

which may be written as:

M = Mo( Wst - Wo ) EQ 5

If the cross-section MM� were at AB, then Wst = Wo ( the weight of the rod 
Wst and the weight of the displaced fluid Wo, both below AB would be 
zero). Thus the bending moment M is zero in spite of the compression 
imparted by the pressure force.

If the cross section MM� is not at AB, then the bending effect of the pres-
sure force f is essentially canceled by the bending effect of the pressure 
force g.

FIGURE 2 Free Body Diagram showing the Effect of External Fluid
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The Effective Force
From the above arguments and by comparing Eq 5 and Eq 1, the following 
important conclusions may be drawn:

From a bending standpoint, the system in Figure 1 behaves as:

1. As if the compressive force at AB were zero not f.

2. As if the weight of any portion of the submerged rod were replaced by 
the weight minus the weight of the displaced fluid.

The effect of external pressure, on bending, is to introduce a - f force, thus 
the effective compressive force at AB is zero. Therefore compression due 
to the presence of fluid around a pipe freely suspended in a well cannot 
cause buckling.

The effective and actual longitudinal forces at a distance x above AB are as 
follows, considering tension as positive and compression as negative:

Effective - (ξst - ξo) x

Actual - -f + ξst x

where ξst is the weight of the rod per unit length, and ξo is the weight of the 
displaced fluid per unit length. The distribution of these forces along the 
length of the tubular are shown in Figure 3, in which it has been assumed 
that the top of the tubular is at the fluid surface. The length of the tubular is 
L, as f = ξo L, both the effective and the actual force are equal at the sur-
face, and equal to the weight of the rod in the fluid, i.e. the suspended 
weight.

FIGURE 3 Distribution of Effective and Actual Forces along a Tubular, 
immersed in Fluid.
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The Effective Force
If now there is an applied compressive force F on AB, the actual compres-
sive force at AB would be F + f. Thus the distribution of the effective and 
actual forces can be described by Figure 4. Note, N is denoted by the neu-
tral point, where the effective force is zero and is very important in statics 
of bending and dynamics of transverse vibrations.

FIGURE 4 Distribution of Effective and actual Forces along a Tubular, acted 
upon by a compressive force F, immersed in fluid.
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The Effective Force
Effect of Internal 
pressure

Now consider the effect of fluid pressure inside the tubular, the reasonings 
and conclusions will be similar to those previously reached. Figure 5 and 
Figure 6, deal with the effects of fluid inside the tubular and are analogous 
to Figure 1 and Figure 2.

FIGURE 5 Effect of Internal Pressure

FIGURE 6 Effect of Internal Pressure
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The Effective Force
The tubular terminates at AB, the pressure force f* subjects the pipe to ten-
sion, but its bending effect is essentially compensated by the pressure force 
g*, on the lateral surface of the inside of the tubular below MM�. The por-
tion of the pipe below MM� is subjected to forces f*, Wst, g* and r*. The 
bending moment M at the section MM� is:

M = Mo( f* ) + Mo( g* ) + Mo( Wst ) EQ 6

Now consider the fluid inside the pipe, we get

f* + g* + r* = Wi EQ 7

where, Wi is the weight of the fluid inside the tubular below MM�. The 
force Wi is applied at the center of gravity and directed downward. From 
this, taking moments at O:

Mo( f *) + Mo( g *) = Mo( Wi) EQ 8

Substituting Eq 8 in Eq 6 gives:

M = M( Wst + Wi ) EQ 9

From Eq 9 and Eq 6, the following conclusions may be drawn:

From the bending (or straightening) standpoint, the system of Figure 6 
behaves:

1. As if the tension of the lower termination were zero and not f*.

2. As if the weight of any portion of the pipe was replaced by that weight 
plus the weight of the corresponding inside fluid.

The effective and actual longitudinal forces at a distance x from AB are as 
follows:

Effective - (ξst + ξi) x

Actual - +f + ξst x

where ξst is the weight of the rod per unit length, and ξi is the weight of the 
fluid inside the tubular per unit length. The distribution of these forces 
along the length of the pipe is shown in Figure 7, which is analogous to 
Figure 3.
Tech Note CTES, L.C. 7



The Effective Force
If now a compressive force -F is applied at AB, the actual force at AB is -
F + f* and the effective force is -F. Thus at AB, the effective force is com-
pressive which could make the pipe buckle, inspite of the fact that the 
actual force is tensile ( if -F + f* > 0 ) . This shows that a tensile force due 
to the presence of fluid inside the pipe cannot prevent buckling. Figure 8 
illustrates the distribution of the effective and actual force in this case.

FIGURE 7 Distribution of Effective and Actual Forces along a pipe with 
Internal Fluid

FIGURE 8 Distribution of Effective and Actual Forces along a pipe with 
Fluid inside and with an Applied Compressive Force.
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The Effective Force
Thus, it is seen that the effect of fluid internal and external to a bent tubular 
is to change the effective weight per unit length to

ξ eff = ξ st + ξ i - ξ o EQ 10

and if there is an applied compressive force -F, a resultant force -f due to 
the fluid external to the tubular and a result force f* due to the fluid internal 
to the tubular at any section in question. Then the actual force is -F - f + f*, 
the effective force is -F.

Hence the effect of fluid is to subtract a �fictitious force� -f + f* from the 
actual force. Furthermore, compression due to the presence of fluid around 
a pipe freely suspended in a well cannot cause any buckling. Conversely, a 
tension due to the presence of fluid inside the pipe cannot prevent buckling.

An Alternative Der-
ivation of the 
Effective Force

The usual equation for beam buckling in a plane has the form:

EI y���� + F y�� = 0 EQ 11

where y(z) is the buckled lateral displacement and F is the constant axial 
compressive force acting on the beam column and the � denotes differentia-
tion wrt z, the axial co-ordinate along the beam. As, in general EI y���� is 
the lateral loading per unit length on the beam, it is clear that the elemen-
tary buckling problems amount to solving beam problems with a lateral 
load per unit length amounting to -F y�� . Consequently, to find the influ-
ence of external or internal pressure on buckling, it is necessary to find the 
lateral load imposed by pressure on the beam for a generic lateral displace-
ment of the beam.

Consider a right hollow cylinder (not necessary with a circular cross sec-
tion) subjected to internal and external pressures, as shown in Figure 9. 
Take a short length, dz, between two cross sections. Now bend the cylinder 
about an arbitrary axis. Let y be the perpendicular distance from the bend-
ing axis as shown in Figure 9 where the inside boundary of the cylinder is 
shown. It is straight-forward to show that there is no net force developed on 
the length dz by applying a uniform internal pressure, pi , to the inside sur-
face prior to bending.
Tech Note CTES, L.C. 9



The Effective Force
When the axis of the cylinder is bent to a given radius of curvature, R, the 
axial strain of the cylinder is given by y/R so that the length, which was dz 
before bending is (1 + y/R)dz after bending. The forces Fx and Fy and 
moment Mo, about O, caused by the internal pressure acting on the 
deformed inside boundary of the cylinder are:

where Ai is the area described by the tube inside boundary cross-section 

and  is the x co-ordinate of the centroid of the inside 
cross-sectional area with respect to the origin O.

These results show that the lateral force associated with pi is perpendicular 
to the bending axis, directed away from the center of bending curvature, 
equal to dz (pi Ai/R) and has it�s line of action through the centroid of the 
inside cross sectional area.

A similar derivation using the outside cross sectional area, Ao, and the 
external pressure po, shows that the lateral force associated with po is per-
pendicular to the bending axis, directed toward the center of bending cur-
vature, equal to dz (po Ao/R) and has it�s line of action through the centroid 
of the outside cross section area (located at Xo). Consequently, the net 
force per unit length, Fp, owing to po and pi is:

Fp = (pi Ai - po Ao) / R

The moment per unit length, Mp, about O is

Mp = (pi Ai Xi - po Ao Xo)/R

FIGURE 9 Bending of an Arbitrary Cross-Section

 x

       y

 O

(x,y)

Center for bending curvature located at y = - R

 Inside boundary after bending

( )
( )

RXAdzpyx dx =Rdz - ydy)+y/R) (xdx(pM

/R dz Adx = p+y/Rdz pF

dy = y/Rdz pF

iiiio

iiiy

ix

/    )/ (p = 1 dz 

1 

01 

i∫ ∫
∫
∫

=

=

+=

( ) iii AxdAX /∫=
Tech Note CTES, L.C. 10



The Effective Force
The above results can be used to extend the equation for buckling. Note 
that, for small displacements, 1/R equals -y�� so that the governing beam-
column equation becomes:

EI y���� + (F +pi Ai - po Ao) y�� = 0

and the equation for the effective force becomes:

F eff = F + pi Ai - po Ao

In this equation, F is the actual compressive force on the cylinder. In the 
determination of F, all influences such as end pressure must be accounted 
for.
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